Mechanics of Microtubule Buckling Supported by Cytoplasm

نویسندگان

  • Hanqing Jiang
  • Jiaping Zhang
چکیده

The cytoskeleton provides the mechanical scaffold and maintains the integrity of cells. It is usually believed that one type of cytoskeleton biopolymer, microtubules, bears compressive force. In vitro experiments found that isolated microtubules may form an Euler buckling pattern with a long-wavelength for very small compressive force. This, however, does not agree with in vivo experiments where microtubules buckle with a shortwavelength. In order to understand the structural role of microtubules in vivo, we developed mechanics models that study microtubule buckling supported by cytoplasm. The microtubule is modeled as a linearly elastic cylindrical tube while the cytoplasm is characterized by different types of materials, namely, viscous, elastic, or viscoelastic. The dynamic evolution equations, the fastest growth rate, the critical wavelength, and compressive force, as well as equilibrium buckling configurations are obtained. The ability for a cell to sustain compressive force does not solely rely on microtubules but is also supported by the elasticity of cytoplasm. With the support of the cytoplasm, an individual microtubule can sustain a compressive force on the order of 100 pN. The relatively stiff microtubules and compliant cytoplasm are combined to provide a scaffold for compressive force. DOI: 10.1115/1.2966216

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanics model of microtubule buckling in living cells.

As the most rigid cytoskeletal filaments, microtubules bear compressive forces in living cells, balancing the tensile forces within the cytoskeleton to maintain the cell shape. It is often observed that, in living cells, microtubules under compression severely buckle into short wavelengths. By contrast, when compressed, isolated microtubules in vitro buckle into single long-wavelength arcs. The...

متن کامل

Nonlocal Buckling and Vibration Analysis of Triple-Walled ZnO Piezoelectric Timoshenko Nano-beam Subjected to Magneto-Electro-Thermo-Mechanical Loadings

In this study, using the non-local elasticity theory, the buckling and vibration analysis of triple- walled ZnO piezoelectric Timoshenko beam on elastic Pasternak foundation is analytically investigated under magneto-electro-thermo-mechanical loadings. Using the Timoshenko beam free body diagram, the equilibrium equation of Timoshenko nano-beam model is obtained and solved by Navier’s method fo...

متن کامل

Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading

In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...

متن کامل

The Effect of Modified Couple Stress Theory on Buckling and Vibration Analysis of Functionally Graded Double-Layer Boron Nitride Piezoelectric Plate Based on CPT

In this article, the effect of size-dependent on the buckling and vibration analysis of functionally graded (FG) double-layer boron nitride plate based on classical plate theory (CPT) under electro-thermo-mechanical loadings which is surrounded by elastic foundation is examined. This subject is developed using modified couple stress theory. Using Hamilton's principle, the governing equations of...

متن کامل

On the Significance of Microtubule Flexural Behavior in Cytoskeletal Mechanics

Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008